Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1365964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585271

RESUMO

Ex-vivo lung perfusion (EVLP) has extended the number of transplantable lungs by reconditioning marginal organs. However, EVLP is performed at 37°C without homeostatic regulation leading to metabolic wastes' accumulation in the perfusate and, as a corrective measure, the costly perfusate is repeatedly replaced during the standard of care procedure. As an interesting alternative, a hemodialyzer could be placed on the EVLP circuit, which was previously shown to rebalance the perfusate composition and to maintain lung function and viability without appearing to impact the global gene expression in the lung. Here, we assessed the biological effects of a hemodialyzer during EVLP by performing biochemical and refined functional genomic analyses over a 12h procedure in a pig model. We found that dialysis stabilized electrolytic and metabolic parameters of the perfusate but enhanced the gene expression and protein accumulation of several inflammatory cytokines and promoted a genomic profile predicting higher endothelial activation already at 6h and higher immune cytokine signaling at 12h. Therefore, epuration of EVLP with a dialyzer, while correcting features of the perfusate composition and maintaining the respiratory function, promotes inflammatory responses in the tissue. This finding suggests that modifying the metabolite composition of the perfusate by dialysis during EVLP can have detrimental effects on the tissue response and that this strategy should not be transferred as such to the clinic.


Assuntos
Transplante de Pulmão , Suínos , Animais , Perfusão/métodos , Transplante de Pulmão/métodos , Preservação de Órgãos/métodos , Diálise Renal , Pulmão/fisiologia
2.
Front Immunol ; 14: 1281546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942330

RESUMO

Introduction: Lung transplantation often results in primary and/or chronic dysfunctions that are related to early perioperative innate allo-responses where myeloid subsets play a major role. Corticosteroids are administered upon surgery as a standard-of-care but their action on the different myeloid cell subsets in that context is not known. Methods: To address this issue, we used a cross-circulatory platform perfusing an extracorporeal lung coupled to cell mapping in the pig model, that enabled us to study the recruited cells in the allogeneic lung over 10 hours. Results: Myeloid cells, i.e. granulocytes and monocytic cells including classical CD14pos and non-classical/intermediate CD16pos cells, were the dominantly recruited subsets, with the latter upregulating the membrane expression of MHC class II and CD80/86 molecules. Whereas corticosteroids did not reduce the different cell subset recruitment, they potently dampened the MHC class II and CD80/86 expression on monocytic cells and not on alveolar macrophages. Besides, corticosteroids induced a temporary and partial anti-inflammatory gene profile depending on cytokines and monocyte/macrophage subsets. Discussion: This work documents the baseline effects of the standard-of-care corticosteroid treatment for early innate allo-responses. These insights will enable further optimization and improvement of lung transplantation outcomes.


Assuntos
Transplante de Pulmão , Monócitos , Animais , Suínos , Monócitos/metabolismo , Células Mieloides , Macrófagos , Corticosteroides/metabolismo
3.
Front Immunol ; 14: 1142228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465668

RESUMO

In response to the increasing demand for lung transplantation, ex vivo lung perfusion (EVLP) has extended the number of suitable donor lungs by rehabilitating marginal organs. However despite an expanding use in clinical practice, the responses of the different lung cell types to EVLP are not known. In order to advance our mechanistic understanding and establish a refine tool for improvement of EVLP, we conducted a pioneer study involving single cell RNA-seq on human lungs declined for transplantation. Functional enrichment analyses were performed upon integration of data sets generated at 4 h (clinical duration) and 10 h (prolonged duration) from two human lungs processed to EVLP. Pathways related to inflammation were predicted activated in epithelial and blood endothelial cells, in monocyte-derived macrophages and temporally at 4 h in alveolar macrophages. Pathways related to cytoskeleton signaling/organization were predicted reduced in most cell types mainly at 10 h. We identified a division of labor between cell types for the selected expression of cytokine and chemokine genes that varied according to time. Immune cells including CD4+ and CD8+ T cells, NK cells, mast cells and conventional dendritic cells displayed gene expression patterns indicating blunted activation, already at 4 h in several instances and further more at 10 h. Therefore despite inducing inflammatory responses, EVLP appears to dampen the activation of major lung immune cell types, what may be beneficial to the outcome of transplantation. Our results also support that therapeutics approaches aiming at reducing inflammation upon EVLP should target both the alveolar and vascular compartments.


Assuntos
Linfócitos T CD8-Positivos , Transplante de Pulmão , Humanos , Perfusão/métodos , Células Endoteliais , Transplante de Pulmão/métodos , Pulmão/fisiologia , Inflamação
4.
PLoS One ; 18(5): e0285724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37253049

RESUMO

Lung transplantation is the only curative option for end-stage chronic respiratory diseases. However the survival rate is only about 50% at 5 years. Although experimental evidences have shown that innate allo-responses impact on the clinical outcome, the knowledge of the involved mechanisms involved is limited. We established a cross-circulatory platform to monitor the early recruitment and activation of immune cells in an extracorporeal donor lung by coupling blood perfusion to cell mapping with a fluorescent marker in the pig, a commonly-used species for lung transplantation. The perfusing pig cells were easily detectable in lung cell suspensions, in broncho-alveolar lavages and in different areas of lung sections, indicating infiltration of the organ. Myeloid cells (granulocytes and monocytic cells) were the dominant recruited subsets. Between 6 and 10 h of perfusion, recruited monocytic cells presented a strong upregulation of MHC class II and CD80/86 expression, whereas alveolar macrophages and donor monocytic cells showed no significant modulation of expression. This cross-circulation model allowed us to monitor the initial encounter between perfusing cells and the lung graft, in an easy, rapid, and controllable manner, to generate robust information on innate response and test targeted therapies for improvement of lung transplantation outcome.


Assuntos
Transplante de Pulmão , Animais , Suínos , Pulmão , Genes MHC da Classe II , Perfusão
5.
Transplantation ; 106(5): 979-987, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468431

RESUMO

BACKGROUND: Normothermic ex vivo lung perfusion (EVLP) increases the pool of donor lungs by requalifying marginal lungs refused for transplantation through the recovery of macroscopic and functional properties. However, the cell response and metabolism occurring during EVLP generate a nonphysiological accumulation of electrolytes, metabolites, cytokines, and other cellular byproducts which may have deleterious effects both at the organ and cell levels, with impact on transplantation outcomes. METHODS: We analyzed the physiological, metabolic, and genome-wide response of lungs undergoing a 6-h EVLP procedure in a pig model in 4 experimental conditions: without perfusate modification, with partial replacement of fluid, and with adult or pediatric dialysis filters. RESULTS: Adult and pediatric dialysis stabilized the electrolytic and metabolic profiles while maintaining acid-base and gas exchanges. Pediatric dialysis increased the level of IL-10 and IL-6 in the perfusate. Despite leading to modification of the perfusate composition, the 4 EVLP conditions did not affect the gene expression profiles, which were associated in all cases with increased cell survival, cell proliferation, inflammatory response and cell movement, and with inhibition of bleeding. CONCLUSIONS: Management of EVLP perfusate by periodic replacement and continuous dialysis has no significant effect on the lung function nor on the gene expression profiles ex vivo. These results suggest that the accumulation of dialyzable cell products does not significantly alter the lung cell response during EVLP, a finding that may have impact on EVLP management in the clinic.


Assuntos
Transplante de Pulmão , Preservação de Órgãos , Animais , Humanos , Pulmão , Transplante de Pulmão/métodos , Preservação de Órgãos/métodos , Perfusão/métodos , Diálise Renal , Suínos
6.
Mucosal Immunol ; 14(4): 949-962, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33846534

RESUMO

Respiratory Syncytial Virus (RSV) is the major cause of lower respiratory tract infection in infants, in whom, the sensing of RSV by innate immune receptors and its regulation are still poorly described. However, the severe bronchiolitis following RSV infection in neonates has been associated with a defect in type I interferons (IFN-I) production, a cytokine produced mainly by alveolar macrophages (AMs) upon RSV infection in adults. In the present study, neonatal C57BL/6 AMs mobilized very weakly the IFN-I pathway upon RSV infection in vitro and failed to restrain virus replication. However, IFN-I productions by neonatal AMs were substantially increased by the deletion of Insulin-Responsive AminoPeptidase (IRAP), a protein previously involved in the regulation of IFN-I production by dendritic cells. Moreover, neonatal IRAPKO AMs showed a higher expression of IFN-stimulated genes than their wild-type C57BL/6 counterpart. Interestingly, depletion of IRAP did not affect adult AM responses. Finally, we demonstrated that newborn IRAPKO mice infected with RSV had more IFN-I in their lungs and eliminated the virus more efficiently than WT neonates. Taken together, early-life susceptibility to RSV infection may be related to an original age-dependent suppressive function of IRAP on the IFN-I driven-antiviral responses in neonatal AMs.


Assuntos
Cistinil Aminopeptidase/metabolismo , Interferon Tipo I/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sinciciais Respiratórios , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Vírus Respiratório Sincicial/virologia , Transdução de Sinais , Receptores Toll-Like/metabolismo , Replicação Viral
7.
Vaccines (Basel) ; 9(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803302

RESUMO

The induction of long-lasting clinical and virological protection is needed for a successful vaccination program against the bovine respiratory syncytial virus (BRSV). In this study, calves with BRSV-specific maternally derived antibodies were vaccinated once, either with (i) a BRSV pre-fusion protein (PreF) and MontanideTM ISA61 VG (ISA61, n = 6), (ii) BRSV lacking the SH gene (ΔSHrBRSV, n = 6), (iii) a commercial vaccine (CV, n = 6), or were injected with ISA61 alone (n = 6). All calves were challenged with BRSV 92 days later and were euthanized 13 days post-infection. Based on clinical, pathological, and proteomic data, all vaccines appeared safe. Compared to the controls, PreF induced the most significant clinical and virological protection post-challenge, followed by ΔSHrBRSV and CV, whereas the protection of PreF-vaccinated calves was correlated with BRSV-specific serum immunoglobulin (Ig)G antibody responses 84 days post-vaccination, and the IgG antibody titers of ΔSHrBRSV- and CV-vaccinated calves did not differ from the controls on this day. Nevertheless, strong anamnestic BRSV- and PreF-specific IgG responses occurred in calves vaccinated with either of the vaccines, following a BRSV challenge. In conclusion, PreF and ΔSHrBRSV are two efficient one-shot candidate vaccines. By inducing a protection for at least three months, they could potentially improve the control of BRSV in calves.

8.
Vaccines (Basel) ; 8(2)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443437

RESUMO

Achieving safe and protective vaccination against respiratory syncytial virus (RSV) in infants and in calves has proven a challenging task. The design of recombinant antigens with a conformation close to their native form in virus particles is a major breakthrough. We compared two subunit vaccines, the bovine RSV (BRSV) pre-fusion F (preF) alone or with nanorings formed by the RSV nucleoprotein (preF+N). PreF and N proteins are potent antigenic targets for neutralizing antibodies and T cell responses, respectively. To tackle the challenges of neonatal immunization, three groups of six one-month-old calves with maternally derived serum antibodies (MDA) to BRSV received a single intramuscular injection of PreF, preF+N with MontanideTM ISA61 VG (ISA61) as adjuvant or only ISA61 (control). One month later, all calves were challenged with BRSV and monitored for virus replication in the upper respiratory tract and for clinical signs of disease over one week, and then post-mortem examinations of their lungs were performed. Both preF and preF+N vaccines afforded safe, clinical, and virological protection against BRSV, with little difference between the two subunit vaccines. Analysis of immune parameters pointed to neutralizing antibodies and antibodies to preF as being significant correlates of protection. Thus, a single shot vaccination with preF appears sufficient to reduce the burden of BRSV disease in calves with MDA.

9.
NPJ Vaccines ; 5(1): 1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31908850

RESUMO

Foot and mouth disease (FMD) is a highly contagious viral disease with high economic impact, representing a major threat for cloven-hooved mammals worldwide. Vaccines based on adjuvanted inactivated virus (iFMDV) induce effective protective immunity implicating antibody (Ab) responses. To reduce the biosafety constraints of the manufacturing process, a non-replicative human adenovirus type 5 vector encoding FMDV antigens (Ad5-FMDV) has been developed. Here we compared the immunogenicity of iFMDV and Ad5-FMDV with and without the ISA206VG emulsion-type adjuvant in sheep. Contrasted Ab responses were obtained: iFMDV induced the highest Ab levels, Ad5-FMDV the lowest ones, and ISA206VG increased the Ad5-FMDV-induced Ab responses to protective levels. Each vaccine generated heterogeneous Ab responses, with high and low responders, the latter being considered as obstacles to vaccine effectiveness. A transcriptomic study on total blood responses at 24 h post-vaccination revealed several blood gene module activities correlating with long-term Ab responses. Downmodulation of T cell modules' activities correlated with high responses to iFMDV and to Ad5-FMDV+ISA206VG vaccines as also found in other systems vaccinology studies in humans and sheep. The impact of cell cycle activity depended on the vaccine types, as it positively correlated with higher responses to iFMDV but negatively to non-adjuvanted Ad5-FMDV. Finally an elevated B cell activity at 24 h correlated with high Ab responses to the Ad5-FMDV+ISA206VG vaccine. This study provides insights into the early mechanisms driving the Ab response induced by different vaccine regimens including Ad5 vectors and points to T cell modules as early biomarker candidates of different vaccine-type efficacy across species.

10.
J Control Release ; 308: 14-28, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31265882

RESUMO

DNA vaccination is an attractive technology, based on its well-established manufacturing process, safety profile, adaptability to rapidly combat pandemic pathogens, and stability at ambient temperature; however an optimal delivery method of DNA remains to be determined. As pigs are a relevant model for humans, we comparatively evaluated the efficiency of vaccine DNA delivery in vivo to pigs using dissolvable microneedle patches, intradermal inoculation with needle (ID), surface electroporation (EP), with DNA associated or not to cationic poly-lactic-co-glycolic acid nanoparticles (NPs). We used a luciferase encoding plasmid (pLuc) as a reporter and vaccine plasmids encoding antigens from the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), a clinically-significant swine arterivirus. Patches were successful at inducing luciferase expression in skin although at lower level than EP. EP induced the cutaneaous recruitment of granulocytes, of MHC2posCD172Apos myeloid cells and type 1 conventional dendritic cells, in association with local production of IL-1ß, IL-8 and IL-17; these local responses were more limited with ID and undetectable with patches. The addition of NP to EP especially promoted the recruitment of the MHC2posCD172Apos CD163int and CD163neg myeloid subsets. Notably we obtained the strongest and broadest IFNγ T-cell response against a panel of PRRSV antigens with DNA + NPs delivered by EP, whereas patches and ID were ineffective. The anti-PRRSV IgG responses were the highest with EP administration independently of NPs, mild with ID, and undetectable with patches. These results contrast with the immunogenicity and efficacy previously induced in mice with patches. This study concludes that successful DNA vaccine administration in skin can be achieved in pigs with electroporation and patches, but only the former induces local inflammation, humoral and cellular immunity, with the highest potency when NPs were used. This finding shows the importance of evaluating the delivery and immunogenicity of DNA vaccines beyond the mouse model in a preclinical model relevant to human such as pig and reveals that EP with DNA combined to NP induces strong immunogenicity.


Assuntos
Eletroporação/métodos , Nanopartículas , Vacinação/métodos , Vacinas de DNA/administração & dosagem , Animais , Feminino , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Inflamação/etiologia , Masculino , Agulhas , Plasmídeos , Especificidade da Espécie , Suínos , Vacinas de DNA/imunologia , Vacinas de DNA/toxicidade
11.
Viruses ; 11(6)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31207934

RESUMO

The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) induces reproductive disorders in sows and respiratory illnesses in growing pigs and is considered as one of the main pathogenic agents responsible for economic losses in the porcine industry worldwide. Modified live PRRSV vaccines (MLVs) are very effective vaccine types against homologous strains but they present only partial protection against heterologous viral variants. With the goal to induce broad and cross-protective immunity, we generated DNA vaccines encoding B and T antigens derived from a European subtype 1 strain that include T-cell epitope sequences known to be conserved across strains. These antigens were expressed either in a native form or in the form of vaccibodies targeted to the endocytic receptor XCR1 and CD11c expressed by different types of antigen-presenting cells (APCs). When delivered in skin with cationic nanoparticles and surface electroporation, multiple DNA vaccinations as a stand-alone regimen induced substantial antibody and T-cell responses, which were not promoted by targeting antigens to APCs. Interestingly, a DNA-MLV prime-boost strategy strongly enhanced the antibody response and broadened the T-cell responses over the one induced by MLV or DNA-only. The anti-nucleoprotein antibody response induced by the DNA-MLV prime-boost was clearly promoted by targeting the antigen to CD11c and XCR1, indicating a benefit of APC-targeting on the B-cell response. In conclusion, a DNA-MLV prime-boost strategy, by enhancing the potency and breadth of MLV vaccines, stands as a promising vaccine strategy to improve the control of PRRSV in infected herds.


Assuntos
Anticorpos Antivirais/sangue , Esquemas de Imunização , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Linfócitos T/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Formação de Anticorpos , Imunidade Celular , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
12.
Viruses ; 11(6)2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242645

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus inducing abortion in sows and respiratory disease in young pigs, is a leading infectious cause of economic losses in the swine industry. Modified live vaccines (MLVs) help in controlling the disease, but their efficacy is often compromised by the high genetic diversity of circulating viruses, leading to vaccine escape variants in the field. In this study, we hypothesized that a DNA prime with naked plasmids encoding PRRSV antigens containing conserved T-cell epitopes may improve the protection of MLV against a heterologous challenge. Plasmids were delivered with surface electroporation or needle-free jet injection and European strain-derived PRRSV antigens were targeted or not to the dendritic cell receptor XCR1. Compared to MLV-alone, the DNA-MLV prime- boost regimen slightly improved the IFNγ T-cell response, and substantially increased the antibody response against envelope motives and the nucleoprotein N. The XCR1-targeting of N significantly improved the anti-N specific antibody response. Despite this immuno-potentiation, the DNA-MLV regimen did not further decrease the serum viral load or the nasal viral shedding of the challenge strain over MLV-alone. Finally, the heterologous protection, achieved in absence of detectable effective neutralizing antibodies, was not correlated to the measured antibody or to the IFNγ T-cell response. Therefore, immune correlates of protection remain to be identified and represent an important gap of knowledge in PRRSV vaccinology. This study importantly shows that a naked DNA prime immuno-potentiates an MLV, more on the B than on the IFNγ T-cell response side, and has to be further improved to reach cross-protection.


Assuntos
Imunidade Heteróloga , Esquemas de Imunização , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Fatores Imunológicos/metabolismo , Interferon gama/metabolismo , Mucosa Nasal/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Linfócitos T/imunologia , Resultado do Tratamento , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de DNA/administração & dosagem , Carga Viral , Vacinas Virais/administração & dosagem , Eliminação de Partículas Virais
13.
Front Immunol ; 10: 953, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130951

RESUMO

Swine lymph nodes (LN) present an inverted structure compared to mouse and human, with the afferent lymph diffusing from the center to the periphery. This structure, also observed in close and distant species such as dolphins, hippopotamus, rhinoceros, and elephants, is poorly described, nor are the LN macrophage populations and their relationship with B cell follicles. B cell maturation occurs mainly in LN B cell follicles with the help of LN macrophage populations endowed with different antigen delivery capacities. We identified three macrophage populations that we localized in the inverted LN spatial organization. This allowed us to ascribe porcine LN MΦ to their murine counterparts: subcapsular sinus MΦ, medullary cord MΦ and medullary sinus MΦ. We identified the different intra and extrafollicular stages of LN B cells maturation and explored the interaction of MΦ, drained antigen and follicular B cells. The porcine reproductive and respiratory syndrome virus (PRRSV) is a major porcine pathogen that infects tissue macrophages (MΦ). PRRSV is persistent in the secondary lymphoid tissues and induces a delay in neutralizing antibodies appearance. We observed PRRSV interaction with two LN MΦ populations, of which one interacts closely with centroblasts. We observed BCL6 up-regulation in centroblast upon PRRSV infection, leading to new hypothesis on PRRSV inhibition of B cell maturation. This seminal study of porcine LN will permit fruitful comparison with murine and human LN for a better understanding of normal and inverted LN development and functioning.


Assuntos
Linfócitos B/imunologia , Linfonodos/imunologia , Macrófagos/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos
14.
Front Immunol ; 10: 860, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105695

RESUMO

The Rift Valley fever virus (RVFV) is responsible for a serious mosquito-borne viral disease in humans and ruminants. The development of a new and safer vaccine is urgently needed due to the risk of introduction of this arbovirus into RVFV-free continents. We recently showed that a DNA vaccine encoding eGn, the ectodomain of the RVFV Gn glycoprotein, conferred a substantial protection in the sheep natural host and that the anti-eGn IgG levels correlated to protection. Addressing eGn to DEC205 reduced the protective efficacy while decreasing the antibody and increasing the IFNγ T cell responses in sheep. In order to get further insight into the involved mechanisms, we evaluated our eGn-encoding DNA vaccine strategy in the reference mouse species. A DNA vaccine encoding eGn induced full clinical protection in mice and the passive transfer of immune serum was protective. This further supports that antibodies, although non-neutralizing in vitro, are instrumental in the protection against RVFV. Addressing eGn to DEC205 was also detrimental to protection in mice, and in this species, both the antibody and the IFNγ T cell responses were strongly decreased. Conversely when using a plasmid encoding a different antigen, i.e., mCherry, DEC205 targeting promoted the antibody response. Altogether our results show that the outcome of targeting antigens to DEC205 depends on the species and on the fused antigen and is not favorable in the case of eGn. In addition, we bring evidences that eGn in itself is a pertinent antigen to be included in a DNA vaccine and that next developments should aim at promoting the anti-eGn antibody response.


Assuntos
Glicoproteínas/imunologia , Imunidade Humoral/imunologia , Vírus da Febre do Vale do Rift/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Células CHO , Linhagem Celular , Cricetulus , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Envelope Viral/imunologia
15.
Front Immunol ; 9: 2299, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333837

RESUMO

Porcine Reproductive and Respiratory Syndrome virus (PRRSV) is an arterivirus responsible for highly contagious infection and huge economic losses in pig industry. Two species, PRRSV-1 and PRRSV-2 are distinguished, PRRSV-1 being more prevalent in Europe. PRRSV-1 can further be divided in subtypes. PRRSV-1.3 such as Lena are more pathogenic than PRRSV-1.1 such as Lelystad or Flanders13. PRRSV-1.3 viruses trigger a higher Th1 response than PRRSV-1.1, although the role of the cellular immune response in PRRSV clearance remains ill defined. The pathogenicity as well as the T cell response inductions may be differentially impacted according to the capacity of the virus strain to infect and/or activate DCs. However, the interactions of PRRSV with in vivo-differentiated-DC subtypes such as conventional DC1 (cDC1), cDC2, and monocyte-derived DCs (moDC) have not been thoroughly investigated. Here, DC subpopulations from Lena in vivo infected pigs were analyzed for viral genome detection. This experiment demonstrates that cDC1, cDC2, and moDC are not infected in vivo by Lena. Analysis of DC cytokines production revealed that cDC1 are clearly activated in vivo by Lena. In vitro comparison of 3 Europeans strains revealed no infection of the cDC1 and cDC2 and no or little infection of moDC with Lena, whereas the two PRRSV-1.1 strains infect none of the 3 DC subtypes. In vitro investigation of T helper polarization and cytokines production demonstrate that Lena induces a higher Th1 polarization and IFNγ secretion than FL13 and LV. Altogether, this work suggests an activation of cDC1 by Lena associated with a Th1 immune response polarization.


Assuntos
Células Dendríticas/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Biomarcadores , Citocinas/metabolismo , Células Dendríticas/metabolismo , Ativação Linfocitária/imunologia , Teste de Cultura Mista de Linfócitos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
16.
Sci Rep ; 8(1): 10172, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29977043

RESUMO

Lung inflammation is frequently involved in respiratory conditions and it is strongly controlled by mononuclear phagocytes (MNP). We previously studied porcine lung MNP and described a new population of cells presenting all the features of alveolar macrophages (AM) except for their parenchymal location, that we named AM-like cells. Herein we showed that AM-like cells are macrophages phagocytosing blood-borne particles, in agreement with a pulmonary intravascular macrophages (PIM) identity. PIM have been described microscopically long time ago in species from the Laurasiatheria superorder such as bovine, swine, cats or cetaceans. We observed that PIM were more inflammatory than AM upon infection with the porcine reproductive and respiratory syndrome virus (PRRSV), a major swine pathogen. Moreover, whereas PRRSV was thought to mainly target AM, we observed that PIM were a major producer of virus. The PIM infection was more correlated with viremia in vivo than AM infection. Finally like AM, PIM-expressed genes were characteristic of an embryonic monocyte-derived macrophage population, whose turnover is independent of bone marrow-derived hematopoietic precursors. This last observation raised the interesting possibility that AM and PIM originate from the same lung precursor.


Assuntos
Macrófagos Alveolares/imunologia , Fagocitose , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Viremia/imunologia , Animais , Células Cultivadas , Feminino , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Macrófagos Alveolares/virologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Cultura Primária de Células , Organismos Livres de Patógenos Específicos , Sus scrofa , Suínos , Porco Miniatura , Viremia/virologia
17.
NPJ Vaccines ; 3: 14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29707242

RESUMO

Rift Valley fever virus, a phlebovirus endemic in Africa, causes serious diseases in ruminants and humans. Due to the high probability of new outbreaks and spread to other continents where competent vectors are present, vaccine development is an urgent priority as no licensed vaccines are available outside areas of endemicity. In this study, we evaluated in sheep the protective immunity induced by DNA vaccines encoding the extracellular portion of the Gn antigen which was either or not targeted to antigen-presenting cells. The DNA encoding untargeted antigen was the most potent at inducing IgG responses, although not neutralizing, and conferred a significant clinical and virological protection upon infectious challenge, superior to DNA vaccines encoding the targeted antigen. A statistical analysis of the challenge parameters supported that the anti-eGn IgG, rather than the T-cell response, was instrumental in protection. Altogether, this work shows that a DNA vaccine encoding the extracellular portion of the Gn antigen confers substantial-although incomplete-protective immunity in sheep, a natural host with high preclinical relevance, and provides some insights into key immune correlates useful for further vaccine improvements against the Rift Valley fever virus.

18.
Sci Rep ; 7(1): 7639, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794452

RESUMO

XCR1 is selectively expressed on a conventional dendritic cell subset, the cDC1 subset, through phylogenetically distant species. The outcome of antigen-targeting to XCR1 may therefore be similar across species, permitting the translation of results from experimental models to human and veterinary applications. Here we evaluated in pigs the immunogenicity of bivalent protein structures made of XCL1 fused to the external portion of the influenza virus M2 proton pump, which is conserved through strains and a candidate for universal influenza vaccines. Pigs represent a relevant target of such universal vaccines as pigs can be infected by swine, human and avian strains. We found that cDC1 were the only cell type labeled by XCR1-targeted mCherry upon intradermal injection in pig skin. XCR1-targeted M2e induced higher IgG responses in seronegative and seropositive pigs as compared to non-targeted M2e. The IgG response was less significantly enhanced by CpG than by XCR1 targeting, and CpG did not further increase the response elicited by XCR1 targeting. Monophosphoryl lipid A with neutral liposomes did not have significant effect. Thus altogether M2e-targeting to XCR1 shows promises for a trans-species universal influenza vaccine strategy, possibly avoiding the use of classical adjuvants.


Assuntos
Formação de Anticorpos , Quimiocinas C/metabolismo , Células Dendríticas/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/imunologia , Pele/imunologia , Proteínas da Matriz Viral/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Quimiocinas C/administração & dosagem , Quimiocinas C/genética , Células Dendríticas/metabolismo , Imunoglobulina G/sangue , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Pele/metabolismo , Suínos , Proteínas da Matriz Viral/administração & dosagem , Proteínas da Matriz Viral/genética
20.
Anticancer Res ; 36(7): 3315-20, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27354588

RESUMO

AIM: To determine whether up-regulation of basic fibroblast growth factor (bFGF) in VX2 cells reduces tumor necrosis. MATERIALS AND METHODS: VX2 cells were transfected with expression vector containing cDNA of rabbit bFGF. Stable clones producing rabbit bFGF (bFGF-VX2) were selected. bFGF-VX2 (n=5) or non-transfected VX2 (control) (n=5) cells were implanted into leg muscle of 10 rabbits. The tumors were characterized 21 days after grafting. RESULTS: Overexpression of bFGF by VX2 tumors significantly reduced necrosis (p<0.0223) and increased cell viability (p<0.0223), without effect on the mean vascular density. bFGF concentration was significantly higher in bFGF-VX2 tumors (p<0.0062) and negatively correlated with tumor volume at day 21 (ρ=-0.927, p<0.0034). Vascular endothelial growth factor concentration was significantly lower in bFGF-VX2 tumors (p<0.0105) and negatively correlated with the bFGF concentration of tumors (ρ=-0.903, p<0.0067). CONCLUSION: The overexpression of bFGF in VX2 cells increased tumor viability and reduced necrosis, making the evaluation of long-term anticancer therapies possible in this model.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Neoplasias Hepáticas Experimentais/irrigação sanguínea , Neoplasias Hepáticas Experimentais/metabolismo , Animais , Linhagem Celular Tumoral , Microvasos/patologia , Necrose , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Coelhos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA